Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of secondary electrons on emission

Identifieur interne : 000080 ( Chine/Analysis ); précédent : 000079; suivant : 000081

The effect of secondary electrons on emission

Auteurs : RBID : Pascal:13-0250395

Descripteurs français

English descriptors

Abstract

The effect of secondary electrons on emission is studied by modelling the electrons behaviours in multi-layers, including electron injection, transportation, multiplication, and emission. The dielectric constant model and carrier mobility model are presented to describe the voltage distribution in multi-layers for the non-current injection and current injection respectively. After injection, the electrons are accelerated in SiO2, where they collide with the electrons, generating secondary electrons, consequently contributing to emission. A multiplying factor M is introduced to describe the secondary electrons multiplication in certain electrical field strength. The prediction was further proved by comparing two groups of devices with and without the accelerating layer: ITO/MEH-PPV/SiO2/Al and ITO/MEH-PPV/BCP/Al. The current avalanche observed in current-illumination experiment is a proof of the existence and contribution of secondary electrons.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0250395

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of secondary electrons on emission</title>
<author>
<name>YUAN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>SULING ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>ZHENG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>FUJUN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>DEWEI ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue</s1>
<s2>Singapore 639798</s2>
<s3>SGP</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 639798</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JINGLU SONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Materials Science & Engineering, University of Florida</s1>
<s2>FL 32611</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name>JINZHAO HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>School of Physics, University of Jinan</s1>
<s2>Jinan 250022, Shandong Province</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Jinan 250022, Shandong Province</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GUANG YAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>CHAO KONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>XURONG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0250395</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0250395 INIST</idno>
<idno type="RBID">Pascal:13-0250395</idno>
<idno type="wicri:Area/Main/Corpus">000992</idno>
<idno type="wicri:Area/Main/Repository">000357</idno>
<idno type="wicri:Area/Chine/Extraction">000080</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-2313</idno>
<title level="j" type="abbreviated">J. lumin.</title>
<title level="j" type="main">Journal of luminescence</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Avalanche</term>
<term>Carrier mobility</term>
<term>Cathodoluminescence</term>
<term>Electric field effects</term>
<term>Electron emission</term>
<term>Electron injection</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Modelling</term>
<term>Multilayers</term>
<term>Permittivity</term>
<term>Secondary electron</term>
<term>Silicon oxides</term>
<term>Solid state</term>
<term>Tin oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electron secondaire</term>
<term>Emission électronique</term>
<term>Modélisation</term>
<term>Injection électron</term>
<term>Constante diélectrique</term>
<term>Mobilité porteur charge</term>
<term>Multicouche</term>
<term>Oxyde de silicium</term>
<term>Effet champ électrique</term>
<term>Oxyde d'étain</term>
<term>Oxyde d'indium</term>
<term>Avalanche</term>
<term>Eclairement</term>
<term>Etat solide</term>
<term>Cathodoluminescence</term>
<term>SiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of secondary electrons on emission is studied by modelling the electrons behaviours in multi-layers, including electron injection, transportation, multiplication, and emission. The dielectric constant model and carrier mobility model are presented to describe the voltage distribution in multi-layers for the non-current injection and current injection respectively. After injection, the electrons are accelerated in SiO
<sub>2</sub>
, where they collide with the electrons, generating secondary electrons, consequently contributing to emission. A multiplying factor M is introduced to describe the secondary electrons multiplication in certain electrical field strength. The prediction was further proved by comparing two groups of devices with and without the accelerating layer: ITO/MEH-PPV/SiO
<sub>2</sub>
/Al and ITO/MEH-PPV/BCP/Al. The current avalanche observed in current-illumination experiment is a proof of the existence and contribution of secondary electrons.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-2313</s0>
</fA01>
<fA02 i1="01">
<s0>JLUMA8</s0>
</fA02>
<fA03 i2="1">
<s0>J. lumin.</s0>
</fA03>
<fA05>
<s2>138</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effect of secondary electrons on emission</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUAN LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SULING ZHAO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHENG XU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FUJUN ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DEWEI ZHAO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JINGLU SONG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JINZHAO HUANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GUANG YAN</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>CHAO KONG</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>XURONG XU</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Optoelectronics Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue</s1>
<s2>Singapore 639798</s2>
<s3>SGP</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Materials Science & Engineering, University of Florida</s1>
<s2>FL 32611</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Physics, University of Jinan</s1>
<s2>Jinan 250022, Shandong Province</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>89-93</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14666</s2>
<s5>354000503755350160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0250395</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of luminescence</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of secondary electrons on emission is studied by modelling the electrons behaviours in multi-layers, including electron injection, transportation, multiplication, and emission. The dielectric constant model and carrier mobility model are presented to describe the voltage distribution in multi-layers for the non-current injection and current injection respectively. After injection, the electrons are accelerated in SiO
<sub>2</sub>
, where they collide with the electrons, generating secondary electrons, consequently contributing to emission. A multiplying factor M is introduced to describe the secondary electrons multiplication in certain electrical field strength. The prediction was further proved by comparing two groups of devices with and without the accelerating layer: ITO/MEH-PPV/SiO
<sub>2</sub>
/Al and ITO/MEH-PPV/BCP/Al. The current avalanche observed in current-illumination experiment is a proof of the existence and contribution of secondary electrons.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70I20</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70G22C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H60H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Electron secondaire</s0>
<s5>41</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Secondary electron</s0>
<s5>41</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Electrón secundario</s0>
<s5>41</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Emission électronique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electron emission</s0>
<s5>42</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>43</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>43</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Injection électron</s0>
<s5>44</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electron injection</s0>
<s5>44</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Inyección electrón</s0>
<s5>44</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Constante diélectrique</s0>
<s5>45</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Permittivity</s0>
<s5>45</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>46</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>46</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>62</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>63</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>64</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>64</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>64</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>65</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>65</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>65</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Avalanche</s0>
<s5>66</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Avalanche</s0>
<s5>66</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Avalancha</s0>
<s5>66</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>67</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>67</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Etat solide</s0>
<s5>68</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Solid state</s0>
<s5>68</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estado sólido</s0>
<s5>68</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Cathodoluminescence</s0>
<s5>69</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Cathodoluminescence</s0>
<s5>69</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>238</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000080 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000080 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0250395
   |texte=   The effect of secondary electrons on emission
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024